摘要:山東專升本高等數(shù)學考什么?一二三有什么區(qū)別?山東專升本高等數(shù)學分為高數(shù)I、高數(shù)II和高數(shù)III,目前2024山東專升本各個科目考試大綱已經(jīng)公布了,下面就帶大家一起來看看2024山東專升本高等數(shù)學的考試內(nèi)容。
山東專升本高等數(shù)學考什么?一二三有什么區(qū)別?山東專升本高等數(shù)學分為高數(shù)I、高數(shù)II和高數(shù)III,目前2024山東專升本各個科目考試大綱已經(jīng)公布了,下面就帶大家一起來看看2024山東專升本高等數(shù)學的考試內(nèi)容。
高等數(shù)學Ⅰ考試要求
?、?考試內(nèi)容與要求
本科目考試要求考生掌握高等數(shù)學的基本概念、基本理論和基本方法,主要考查考生識記、理解、計算、推理和應用能力,為進一步學習奠定基礎(chǔ)。具體內(nèi)容與要求如下:
一、函數(shù)、極限與連續(xù)
(一)函數(shù)
1.理解函數(shù)的概念,會求函數(shù)的定義域、表達式及函數(shù)值,會建立應用問題的函數(shù)關(guān)系。
2.掌握函數(shù)的有界性、單調(diào)性、周期性和奇偶性。
3.理解分段函數(shù)、反函數(shù)和復合函數(shù)的概念。
4.掌握函數(shù)的四則運算與復合運算。
5.掌握基本初等函數(shù)的性質(zhì)及其圖形,理解初等函數(shù)的概念。
(二)極限
1.理解數(shù)列極限和函數(shù)極限(包括左極限和右極限)的概念。理解函數(shù)極限存在與左極限、右極限存在之間的關(guān)系。
2.理解數(shù)列極限和函數(shù)極限的性質(zhì)。了解數(shù)列極限和函數(shù)極限存在的兩個收斂準則(夾逼準則與單調(diào)有界準則)。熟練掌握數(shù)列極限和函數(shù)極限的運算法則。
3.熟練掌握
兩個重要極限并會用它們求極限。
4.理解無窮小量、無窮大量的概念,掌握無窮小量的性質(zhì)、無窮小量與無窮大量的關(guān)系。會比較無窮小量的階(高階、低階、同階和等價)。會用等價無窮小量求極限。
?。ㄈ┻B續(xù)
1.理解函數(shù)連續(xù)性(包括左連續(xù)和右連續(xù))的概念,掌握函數(shù)連續(xù)與左連續(xù)、右連續(xù)之間的關(guān)系。會求函數(shù)的間斷點并判斷其類型。
2.掌握連續(xù)函數(shù)的四則運算和復合運算。理解初等函數(shù)在其定義區(qū)間內(nèi)的連續(xù)性。
3.會利用連續(xù)性求極限。
4.掌握閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性定理、最大值和最小值定理、介值定理、零點定理),并會應用這些性質(zhì)解決相關(guān)問題。
二、一元函數(shù)微分學
(一)導數(shù)與微分
1.理解導數(shù)的概念及幾何意義,會用定義求函數(shù)在一點處的導數(shù)(包括左導數(shù)和右導數(shù))。會求平面曲線的切線方程和法線方程。理解函數(shù)的可導性與連續(xù)性之間的關(guān)系。
2.熟練掌握導數(shù)的四則運算法則和復合函數(shù)的求導法則,熟練掌握基本初等函數(shù)的導數(shù)公式。
3.掌握隱函數(shù)求導法、對數(shù)求導法以及由參數(shù)方程所確定的函數(shù)的求導法,會求分段函數(shù)的導數(shù)。
4.理解高階導數(shù)的概念,會求函數(shù)的高階導數(shù)。
5.理解微分的概念,理解導數(shù)與微分的關(guān)系,掌握微分運算法則,會求函數(shù)的一階微分。
?。ǘ┲兄刀ɡ砑皩?shù)的應用
1.理解羅爾定理、拉格朗日中值定理,了解柯西中值定理和泰勒中值定理。會用羅爾定理和拉格朗日中值定理解決相關(guān)問題。
2.熟練掌握洛必達法則,會用洛必達法則求
3.理解駐點、極值點和極值的概念,掌握用導數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,會利用函數(shù)的單調(diào)性證明不等式,掌握函數(shù)最大值和最小值的求法及其應用。
4.會用導數(shù)判斷曲線的凹凸性,會求曲線的拐點以及水平漸近線與垂直漸近線。
三、一元函數(shù)積分學
?。ㄒ唬┎欢ǚe分
1.理解原函數(shù)與不定積分的概念,了解原函數(shù)存在定理,掌握不定積分的性質(zhì)。
2.熟練掌握不定積分的基本公式。
3.熟練掌握不定積分的換元積分法和分部積分法。
4.掌握簡單有理函數(shù)的不定積分的求法。
?。ǘ┒ǚe分
1.理解定積分的概念及幾何意義,了解可積的條件。
2.掌握定積分的性質(zhì)及其應用。
3.理解積分上限的函數(shù),會求它的導數(shù),掌握牛頓-萊布尼茨公式。
4.熟練掌握定積分的換元積分法與分部積分法。
5.會用定積分表達和計算平面圖形的面積、旋轉(zhuǎn)體的體積。
6.了解反常積分的概念。
四、向量代數(shù)與空間解析幾何
(一)向量代數(shù)
1.理解空間直角坐標系,理解向量的概念及其表示法,會求單位向量、方向余弦、向量在坐標軸上的投影。
2.掌握向量的線性運算,會求向量的數(shù)量積與向量積。
3.會求兩個非零向量的夾角,掌握兩個向量平行、垂直的條件。
?。ǘ┢矫媾c直線
1.會求平面的點法式方程、一般式方程。會判斷兩平面的位置關(guān)系(垂直、平行)。
2.會求點到平面的距離。
3.會求直線的對稱式方程、一般式方程、參數(shù)式方程。會判斷兩直線的位置關(guān)系(平行、垂直)。
4.會判斷直線與平面的位置關(guān)系(垂直、平行、直線在平面上)。
五、多元函數(shù)微積分學
(一)多元函數(shù)微分學
1.理解二元函數(shù)的概念、幾何意義及二元函數(shù)的極限與連續(xù)的概念,會求二元函數(shù)的定義域。
2.理解二元函數(shù)偏導數(shù)和全微分的概念,理解全微分存在的必要條件和充分條件。掌握二元函數(shù)的一階、二階偏導數(shù)的求法,會求二元函數(shù)的全微分。
3.掌握復合函數(shù)一階、二階偏導數(shù)的求法。
4.掌握由方程F(x,y,z)=0所確定的隱函數(shù)z=z(x,y)的一階偏導數(shù)的計算方法。
5.會求二元函數(shù)的無條件極值。
?。ǘ┒胤e分
1.理解二重積分的概念、性質(zhì)及其幾何意義。
2.掌握二重積分在直角坐標系及極坐標系下的計算方法。
六、無窮級數(shù)
?。ㄒ唬?shù)項級數(shù)
1.理解數(shù)項級數(shù)收斂、發(fā)散的概念。掌握收斂級數(shù)的基本性質(zhì),掌握級數(shù)收斂的必要條件。
2.掌握幾何級數(shù)、調(diào)和級數(shù)與p級數(shù)的斂散性。
3.掌握正項級數(shù)收斂性的比較判別法和比值判別法。
4.掌握交錯級數(shù)收斂性的萊布尼茨判別法。
5.理解任意項級數(shù)絕對收斂與條件收斂的概念。
(二)冪級數(shù)
1.理解冪級數(shù)的概念,會求冪級數(shù)的收斂半徑、收斂區(qū)間和收斂域。
2.掌握冪級數(shù)在其收斂區(qū)間內(nèi)的性質(zhì)(和、差、逐項求導與逐項積分)。
3.掌握冪級數(shù)的和函數(shù)在其收斂域上的性質(zhì)。
4.會利用逐項求導和逐項積分求冪級數(shù)的和函數(shù)。
5.熟記ex,sin x,cos x,ln(1+x),的麥克勞林級數(shù),會將一些簡單的初等函數(shù)展開為x-x0的冪級數(shù)。
七、常微分方程
?。ㄒ唬┮浑A微分方程
1.理解微分方程的定義,理解微分方程的階、解、通解、初始條件和特解等概念。
2.掌握可分離變量微分方程的解法。
3.掌握一階線性微分方程的解法。
?。ǘ┒A線性微分方程
1.理解二階線性微分方程解的結(jié)構(gòu)。
2.掌握二階常系數(shù)齊次線性微分方程的解法。
Ⅱ.考試形式與題型范圍
一、考試形式
考試采用閉卷、筆試形式。試卷滿分100分,考試時間120分鐘。
二、題型范圍
選擇題、填空題、判斷題、計算題、解答題、證明題、應用題。
山東省2024 年普通高等教育??粕究普猩荚?高等數(shù)學 II 考試要求.doc
山東省2024 年普通高等教育??粕究普猩荚?高等數(shù)學Ⅲ考試要求.doc