發(fā)布時(shí)間:2019/07/13 11:41:05 來源:易學(xué)仕專升本網(wǎng) 閱讀量:9546
摘要:2020年專升本考試距離我們也不遠(yuǎn)啦,數(shù)學(xué)往往是拉開分?jǐn)?shù)最大的一個(gè)學(xué)科。因此考生需要好好備考。下面易學(xué)仕在線小編匯總了一些有關(guān)專升本高數(shù)考試大綱,希望對(duì)考生有幫助。 本大綱適用于經(jīng)濟(jì)學(xué)、管理學(xué)以及職業(yè)教育類、生物科學(xué)類、地理科學(xué)類、環(huán)境科
2020年專升本考試距離我們也不遠(yuǎn)啦,數(shù)學(xué)往往是拉開分?jǐn)?shù)最大的一個(gè)學(xué)科。因此考生需要好好備考。下面易學(xué)仕在線小編匯總了一些有關(guān)專升本高數(shù)考試大綱,希望對(duì)考生有幫助。
本大綱適用于經(jīng)濟(jì)學(xué)、管理學(xué)以及職業(yè)教育類、生物科學(xué)類、地理科學(xué)類、環(huán)境科學(xué)類、心理學(xué)類、藥學(xué)類(除中藥學(xué)類外)六個(gè)一級(jí)學(xué)科的考生。
總要求
本大綱內(nèi)容包括“高等數(shù)學(xué)”及“概率論初步”兩部分,考生應(yīng)按本大綱的要求了解或理解“高等數(shù)學(xué)”中極限和連續(xù)、一元函數(shù)微分學(xué)、一元函數(shù)積分學(xué)和多元函數(shù)微分學(xué)的基本概念與基本理論;了解或理解“概率論”中古典概型、離散型隨機(jī)變量及其數(shù)字特征的基本概念與基本國(guó)際要聞學(xué)會(huì)、掌握或熟練掌握上述各部分的基本方法,應(yīng)注意各部分知識(shí)的結(jié)構(gòu)及知識(shí)的內(nèi)在聯(lián)系;應(yīng)具有一定的抽象思維能力、邏輯推理能力、運(yùn)算能力;能運(yùn)用基本概念、基本理論和基本方法正確地判斷和證明,準(zhǔn)確地計(jì)算;能綜合運(yùn)用所學(xué)知識(shí)分析并解決簡(jiǎn)單的實(shí)際問題。本大綱對(duì)內(nèi)容的要求由低到高,對(duì)概念和理論分為“了解”和“理解”兩個(gè)層次;對(duì)方法和運(yùn)算分為“會(huì)”“掌握”和“熟練”三個(gè)層次。、
復(fù)習(xí)考試內(nèi)容
一、極限和連續(xù)
(1)極限
1.知識(shí)范圍數(shù)列極限的概念和性質(zhì)
(1)數(shù)列數(shù)列極限的定義唯一性有界性四則運(yùn)算法則夾逼定理,單調(diào)有界數(shù)列極限存在定理
(2)函數(shù)極限的概念和性質(zhì)函數(shù)在一點(diǎn)處極限的定義,左、右極限及其與極限的關(guān)系χ趨于無窮(χ→∞,χ→+∞,χ→-∞)時(shí)函數(shù)的極限函數(shù)極限的幾何意義唯一性四則運(yùn)算法則夾逼定理
(3)無窮小量與無窮大量無窮小量與無窮大量的定義無窮小量與無窮大量的關(guān)系,無窮小量的性質(zhì),無窮小量的比較。
(4)兩個(gè)重要極限
sin x lim x=1 x→0
1 lim 1+x=e x→∞x
2.要求
(1)了解極限的概念(對(duì)極限定義中“ε—N”“ε—δ”“ε—M”的描述不作要求)。掌握函數(shù)在一點(diǎn)處的左極限與右極限以及函數(shù)在一點(diǎn)處極限存在的充分必要條件。
(2)了解極限的有關(guān)性質(zhì),掌握極限的四則運(yùn)算法則。
(3)理解無窮小量、無窮大量的概念,掌握無窮小量的性質(zhì)、無窮小量與無窮大量的關(guān)系,會(huì)進(jìn)行無窮小量階的比較(高階、低階、同階和等價(jià))。會(huì)運(yùn)用等價(jià)無窮小量代換求極限。
(4)熟練掌握用兩個(gè)重要極限求極限的方法。
(2)連續(xù)
1.知識(shí)范圍
(1)函數(shù)連續(xù)的概念函數(shù)在一點(diǎn)處連續(xù)的定義左連續(xù)和右連續(xù)函數(shù)在一點(diǎn)處連續(xù)的充分必要條件函數(shù)的間斷點(diǎn)
(2)函數(shù)在一點(diǎn)處連續(xù)的性質(zhì)連續(xù)函數(shù)的四則運(yùn)算復(fù)合函數(shù)的連續(xù)性
(3)閉區(qū)間上連續(xù)函數(shù)的性質(zhì)有界性定理最大值與最小值定理介值定理(包括零點(diǎn)定理)
(4)初等函數(shù)的連續(xù)性
2.要求
(1)理解函數(shù)在一點(diǎn)處連續(xù)與間斷的概念,理解函數(shù)在一點(diǎn)處連續(xù)與極限存在之間的關(guān)系,掌握函數(shù)(含分段函數(shù))在一點(diǎn)處的連續(xù)性的判斷方法。
(2)會(huì)求函數(shù)的間斷點(diǎn)。
(3)掌握在閉區(qū)間上連續(xù)函數(shù)的性質(zhì),會(huì)用它們證明一些簡(jiǎn)單命題。
(4)理解初等函數(shù)在其定義區(qū)間上的連續(xù)性,會(huì)利用函數(shù)的連續(xù)性求極限。
二、一元函數(shù)微分學(xué)
(一)導(dǎo)數(shù)與微分
1.知識(shí)范圍
(1)導(dǎo)數(shù)概念導(dǎo)數(shù)的定義左導(dǎo)數(shù)與右導(dǎo)數(shù)函數(shù)在一點(diǎn)處可導(dǎo)的充分必要條件導(dǎo)數(shù)的幾何意義可導(dǎo)與連續(xù)的關(guān)系
(2)導(dǎo)數(shù)的四則運(yùn)算法則與導(dǎo)數(shù)的基本公式
(3)求導(dǎo)方法復(fù)合函數(shù)的求導(dǎo)法隱函數(shù)的求導(dǎo)法對(duì)數(shù)求導(dǎo)法
(4)高階導(dǎo)數(shù)高階導(dǎo)數(shù)的定義高階導(dǎo)數(shù)的計(jì)算
(5)微分微分的定義微分與導(dǎo)數(shù)的關(guān)系微分法則一階微分形式不變性
2.要求
(1)理解導(dǎo)數(shù)的概念及其幾何意義,了解可導(dǎo)性與連續(xù)性的關(guān)系,會(huì)用定義求函數(shù)在一點(diǎn)處的導(dǎo)數(shù)。
(2)會(huì)求曲線上一點(diǎn)處的切線方程與法線方程。
(3)熟練掌握導(dǎo)數(shù)的基本公式、四則運(yùn)算法則以及復(fù)合函數(shù)的求導(dǎo)方法。
(4)掌握隱函數(shù)的求導(dǎo)法與對(duì)數(shù)求導(dǎo)法。會(huì)求分段函數(shù)的導(dǎo)數(shù)。
(5)了解高階導(dǎo)數(shù)的概念,會(huì)求簡(jiǎn)單函數(shù)的高階導(dǎo)數(shù)。
(6)理解微分的概念,掌握微分法則,了解可微與可導(dǎo)的關(guān)系,會(huì)求函數(shù)的一階微分。
(二)導(dǎo)數(shù)的應(yīng)用
1.知識(shí)范圍
(1)洛必達(dá)(L′Hospital)法則
(2)函數(shù)增減性的判定法
(3)函數(shù)極值與極值點(diǎn)最大值與最小值
(4)曲線的凹凸性、拐點(diǎn)
(5)曲線的水平漸近線與鉛直漸近線
2.要求
(1)熟練掌握用洛必達(dá)法則求“
0∞”“”“0∞”“∞—∞”型未定式的極限的方法。0∞
(2)掌握利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性及求函數(shù)的單調(diào)增、減區(qū)間的方法,會(huì)利用函數(shù)的增減性證明簡(jiǎn)單的不等式。
(3)理解函數(shù)極值的概念,掌握求函數(shù)的駐點(diǎn)、極值點(diǎn)、極值、最大值與最小值的方法,會(huì)求解簡(jiǎn)單的應(yīng)用問題。
(4)會(huì)判定曲線凹凸性,會(huì)求曲線的拐點(diǎn)。
(5)會(huì)求曲線的水平漸近線與鉛直漸近線。
三、一元函數(shù)積分學(xué)
(一)不定積分
1.知識(shí)范圍
(1)不定積分原函數(shù)與不定積分的定義不定積分的性質(zhì)
(2)基本積分公式
(3)換元積分法第一換元法(湊微分法)第二換元法
(4)分部積分法
(5)一些簡(jiǎn)單有理函數(shù)的積分
2.要求
(1)理解原函數(shù)與不定積分的概念及其關(guān)系,掌握不定積分的性質(zhì)。
(2)熟練掌握不定積分的基本公式。
(3)熟練掌握不定積分第一換元法,掌握第二換元法(僅限形如
2 2 2 2?!襛 x dx、a+x dx的三角代換與簡(jiǎn)單的根式代換)∫
(4)熟練掌握不定積分的分部積分法
(5)掌握簡(jiǎn)單有理函數(shù)不定積分的計(jì)算。
(二)定積分
1.知識(shí)范圍
(1)定積分的概念定積分的定義及其幾何意義可積條件
(2)定積分的性質(zhì)
(3)定積分的計(jì)算變上限的定積分牛頓—萊布尼茨(Newton—Leibniz)公式換元積分法分部積分法
(4)無窮區(qū)間的廣義積分、收斂、發(fā)散、計(jì)算方法
(5)定積分的應(yīng)用平面圖形的面積、旋轉(zhuǎn)體的體積
2.要求
(1)理解定積分的概念與幾何意義,了解可積的條件。
(2)掌握定積分的基本性質(zhì)
(3)理解變上限的定積分是上限的函數(shù),掌握對(duì)變上限定積分求導(dǎo)數(shù)的方法。
(4)熟練掌握牛頓—萊布尼茨公式
(5)掌握定積分的換元積分法與分部積分法。
(6)理解無窮區(qū)間廣義積分的概念,掌握其計(jì)算方法。
(7)掌握直角坐標(biāo)系下用定積分計(jì)算平面圖形的面積以及平面圖形繞坐標(biāo)軸旋轉(zhuǎn)所生成旋轉(zhuǎn)體的體積。
四、多元函數(shù)微分學(xué)
1.知識(shí)范圍
(1)多元函數(shù)多元函數(shù)的定義二元函數(shù)的定義域二元函數(shù)的幾何意義
(2)二元函數(shù)的極限與連續(xù)的概念
(3)偏導(dǎo)數(shù)與全微分一階偏導(dǎo)數(shù)二階偏導(dǎo)數(shù)全微分
(4)復(fù)合函數(shù)的偏導(dǎo)數(shù)隱函數(shù)的偏導(dǎo)數(shù)
(5)二元函數(shù)的無條件極值和條件極值
2.要求
(1)了解多元函數(shù)的概念,會(huì)求二元函數(shù)的定義域。了解二元函數(shù)的幾何意義。
(2)了解二元函數(shù)的極限與連續(xù)的概念。
(3)理解二元函數(shù)一階偏導(dǎo)數(shù)和全微分的概念,掌握二元函數(shù)的一階偏導(dǎo)數(shù)的求法。掌握二元函數(shù)的二階偏導(dǎo)數(shù)的求法,掌握二元函數(shù)全微分的求法。
(4)掌握復(fù)合函數(shù)與隱函數(shù)的一階偏導(dǎo)數(shù)的求法。
(5)會(huì)求二元函數(shù)的無條件極值和條件極值。
(6)會(huì)用二元函數(shù)的無條件極值及條件極值求解簡(jiǎn)單的實(shí)際問題。
五、概率論初步
1.知識(shí)范圍
(1)事件及其概率隨機(jī)事件事件的關(guān)系及其運(yùn)算概率的古典型定義概率的性質(zhì)條件概率事件的獨(dú)立性
(2)隨機(jī)變量及其概率分布隨機(jī)變量的概念隨機(jī)變量的分布函數(shù)離散型隨機(jī)變量及其概率分布(3)隨機(jī)變量的數(shù)字特征離散型隨機(jī)變量的數(shù)學(xué)期望方差標(biāo)準(zhǔn)差
2.要求
(1)了解隨機(jī)現(xiàn)象、隨機(jī)試驗(yàn)的基本特點(diǎn);理解基本事件、樣本空間、隨機(jī)事件的概念。
(2)掌握事件之間的關(guān)系:包含關(guān)系、相等關(guān)系、互不相容(或互斥)關(guān)系及對(duì)立關(guān)系。
(3)理解事件之間并(和)、交(積)、差運(yùn)算的定義,掌握其運(yùn)算規(guī)律。
(4)理解概率的古典型定義;掌握事件概率的基本性質(zhì)及事件概率的計(jì)算。
(5)會(huì)求事件的條件概念;掌握概率的乘法公式及事件的獨(dú)立性。
(6)了解隨機(jī)變量的概念及其分布函數(shù)。
(7)理解離散型隨機(jī)變量的定義及其概率分布,掌握概率分布的計(jì)算方法。
(8)會(huì)求離散型隨機(jī)變量的數(shù)學(xué)期望、方差和標(biāo)準(zhǔn)差。
考試形式及試卷結(jié)構(gòu)
試卷總分:150分考試時(shí)間:考試時(shí)間:150分鐘考試方法:考試方法:閉卷,筆試
操作成功